Complex Contagions with Timers
نویسندگان
چکیده
There has been a great deal of effort to try to model social influence-including the spread of behavior, norms, and ideas-on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays adoptions-i.e., changes of state-by the agents, which in turn delays the adoptions of their neighbors. With a homogeneously-distributed timer, in which all nodes have the same amount of delay, the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to the timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation for the Watts threshold model, and we find good agreement with numerical simulations. We also examine our new timer model on networks constructed from empirical data.
منابع مشابه
Complex Contagions Models in Opportunistic Mobile Social Networks
Information contagions is one of the key applications in opportunistic mobile social networks (OMSNs). Most of the recent work only considers the simple contagions, in which the “infected” node will infect each of its opinion-free neighbors through simple contact. However, when the behaviors, beliefs, or preferences spread through the social contact, the willingness to participate may require i...
متن کاملBlocking Complex Contagions Using Community Structure
Blocking the propagation of contagions in populations has many applications, such as stopping the dissemination of leaked information and impeding the spread of an ideology or opinion. Several methods exist for blocking contagions by removing key or critical nodes from a network representation of a population. Some methods, based on network topology alone, run very fast, but their performance c...
متن کاملComplex Contagions: A Decade in Review
Since the publication of “Complex Contagions and the Weakness of Long Ties” in 2007, complex contagions have been studied across an enormous variety of social domains. In reviewing this decade of research, we discuss recent advancements in applied studies of complex contagions, particularly in the domains of health, innovation diffusion, social media, and politics. We also discuss how these emp...
متن کاملDiffusion in Complex Networks With Overlapping Community Structure
In this work, we study diffusion in networks with community structure. We first replicate and extend work on networks with non-overlapping community structure. Then we study diffusion on network models that have overlapping community structure. We study both contagions in the standard SIR model, and complex contagions which are thought to be better approximations of some social diffusion proces...
متن کاملUnderstanding Information Diffusion under Interactions
Information diffusion in online social networks has attracted substantial research effort. Although recent models begin to incorporate interactions among contagions, they still don’t consider the comprehensive interactions involving users and contagions as a whole. Moreover, the interactions obtained in previous work are modeled as latent factors and thus are difficult to understand and interpr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2018